2,653 research outputs found

    An intra-neural microstimulation system for ultra-high field magnetic resonance imaging and magnetoencephalography.

    Get PDF
    BACKGROUND: Intra-neural microstimulation (INMS) is a technique that allows the precise delivery of low-current electrical pulses into human peripheral nerves. Single unit INMS can be used to stimulate individual afferent nerve fibres during microneurography. Combining this with neuroimaging allows the unique monitoring of central nervous system activation in response to unitary, controlled tactile input, with functional magnetic resonance imaging (fMRI) providing exquisite spatial localisation of brain activity and magnetoencephalography (MEG) high temporal resolution. NEW METHOD: INMS systems suitable for use within electrophysiology laboratories have been available for many years. We describe an INMS system specifically designed to provide compatibility with both ultra-high field (7T) fMRI and MEG. Numerous technical and safety issues are addressed. The system is fully analogue, allowing for arbitrary frequency and amplitude INMS stimulation. RESULTS: Unitary recordings obtained within both the MRI and MEG screened-room environments are comparable with those obtained in 'clean' electrophysiology recording environments. Single unit INMS (current <7ΞΌA, 200ΞΌs pulses) of individual mechanoreceptive afferents produces appropriate and robust responses during fMRI and MEG. COMPARISON WITH EXISTING METHOD(S): This custom-built MRI- and MEG-compatible stimulator overcomes issues with existing INMS approaches; it allows well-controlled switching between recording and stimulus mode, prevents electrical shocks because of long cable lengths, permits unlimited patterns of stimulation, and provides a system with improved work-flow and participant comfort. CONCLUSIONS: We demonstrate that the requirements for an INMS-integrated system, which can be used with both fMRI and MEG imaging systems, have been fully met

    Deep forecasting of translational impact in medical research.

    Get PDF
    The value of biomedical research-a $1.7 trillion annual investment-is ultimately determined by its downstream, real-world impact, whose predictability from simple citation metrics remains unquantified. Here we sought to determine the comparative predictability of future real-world translation-as indexed by inclusion in patents, guidelines, or policy documents-from complex models of title/abstract-level content versus citations and metadata alone. We quantify predictive performance out of sample, ahead of time, across major domains, using the entire corpus of biomedical research captured by Microsoft Academic Graph from 1990-2019, encompassing 43.3 million papers. We show that citations are only moderately predictive of translational impact. In contrast, high-dimensional models of titles, abstracts, and metadata exhibit high fidelity (area under the receiver operating curve [AUROC]Β >Β 0.9), generalize across time and domain, and transfer to recognizing papers of Nobel laureates. We argue that content-based impact models are superior to conventional, citation-based measures and sustain a stronger evidence-based claim to the objective measurement of translational potential

    Genetic variation in South Indian castes: evidence from Y-chromosome, mitochondrial, and autosomal polymorphisms

    Get PDF
    Background: Major population movements, social structure, and caste endogamy have influenced the genetic structure of Indian populations. An understanding of these influences is increasingly important as gene mapping and case-control studies are initiated in South Indian populations. Results: We report new data on 155 individuals from four Tamil caste populations of South India and perform comparative analyses with caste populations from the neighboring state of Andhra Pradesh. Genetic differentiation among Tamil castes is low (R = 0.96% for 45 autosomal short tandem repeat (STR) markers), reflecting a largely common origin. Nonetheless, caste- and continent-specific patterns are evident. For 32 lineage-defining Y-chromosome SNPs, Tamil castes show higher affinity to Europeans than to eastern Asians, and genetic distance estimates to the Europeans are ordered by caste rank. For 32 lineage-defining mitochondrial SNPs and hypervariable sequence (HVS) 1, Tamil castes have higher affinity to eastern Asians than to Europeans. For 45 autosomal STRs, upper and middle rank castes show higher affinity to Europeans than do lower rank castes from either Tamil Nadu or Andhra Pradesh. Local between-caste variation (Tamil Nadu R = 0.96%, Andhra Pradesh R = 0.77%) exceeds the estimate of variation between these geographically separated groups (R = 0.12%). Low, but statistically significant, correlations between caste rank distance and genetic distance are demonstrated for Tamil castes using Y-chromosome, mtDNA, and autosomal data. Conclusion: Genetic data from Y-chromosome, mtDNA, and autosomal STRs are in accord with historical accounts of northwest to southeast population movements in India. The influence of ancient and historical population movements and caste social structure can be detected and replicated in South Indian caste populations from two different geographic regions

    Establishing and augmenting views on the acceptability of a paediatric critical care randomised controlled trial (the FEVER trial): a mixed methods study

    Get PDF
    OBJECTIVE: To explore parent and staff views on the acceptability of a randomised controlled trial investigating temperature thresholds for antipyretic intervention in critically ill children with fever and infection (the FEVER trial) during a multi-phase pilot study. DESIGN: Mixed methods study with data collected at three time points: (1) before, (2) during and (3) after a pilot trial. SETTING: English, Paediatric Intensive Care Units (PICUs). PARTICIPANTS: (1) Pre-pilot trial focus groups with pilot site staff (n=56) and interviews with parents (n=25) whose child had been admitted to PICU in the last 3 years with a fever and suspected infection, (2) Questionnaires with parents of randomised children following pilot trial recruitment (n=48 from 47 families) and (3) post-pilot trial interviews with parents (n=19), focus groups (n=50) and a survey (n=48) with site staff. Analysis drew on Sekhon et al's theoretical framework of acceptability. RESULTS: There was initial support for the trial, yet some held concerns regarding the proposed temperature thresholds and not using paracetamol for pain or discomfort. Pre-trial findings informed protocol changes and training, which influenced views on trial acceptability. Staff trained by the FEVER team found the trial more acceptable than those trained by colleagues. Parents and staff found the trial acceptable. Some concerns about pain or discomfort during weaning from ventilation remained. CONCLUSIONS: Pre-trial findings and pilot trial experience influenced acceptability, providing insight into how challenges may be overcome. We present an adapted theoretical framework of acceptability to inform future trial feasibility studies. TRIAL REGISTRATION NUMBERS: ISRCTN16022198 and NCT03028818

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (β€œexon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Crosstalk between Spinal Astrocytes and Neurons in Nerve Injury-Induced Neuropathic Pain

    Get PDF
    Emerging research implicates the participation of spinal dorsal horn (SDH) neurons and astrocytes in nerve injury-induced neuropathic pain. However, the crosstalk between spinal astrocytes and neurons in neuropathic pain is not clear. Using a lumbar 5 (L5) spinal nerve ligation (SNL) pain model, we testified our hypothesis that SDH neurons and astrocytes reciprocally regulate each other to maintain the persistent neuropathic pain states. Glial fibrillary acidic protein (GFAP) was used as the astrocytic specific marker and Fos, protein of the protooncogene c-fos, was used as a marker for activated neurons. SNL induced a significant mechanical allodynia as well as activated SDH neurons indicated by the Fos expression at the early phase and activated astrocytes with the increased expression of GFAP during the late phase of pain, respectively. Intrathecal administration of c-fos antisense oligodeoxynucleotides (ASO) or astroglial toxin L-Ξ±-aminoadipate (L-AA) reversed the mechanical allodynia, respectively. Immunofluorescent histochemistry revealed that intrathecal administration of c-fos ASO significantly suppressed activation of not only neurons but also astrocytes induced by SNL. Meanwhile, L-AA shortened the duration of neuronal activation by SNL. Our data offers evidence that neuronal and astrocytic activations are closely related with the maintenance of neuropathic pain through a reciprocal β€œcrosstalk”. The current study suggests that neuronal and non-neuronal elements should be taken integrally into consideration for nociceptive transmission, and that the intervention of such interaction may offer some novel pain therapeutic strategies
    • …
    corecore